Search results for "linker histone"

showing 4 items of 4 documents

Extracellular Vesicles Shed by Melanoma Cells Contain a Modified Form of H1.0 Linker Histone and H1.0 mRNA-binding Proteins

2016

Extracellular vesicles (EVs) are shed in the extracellular environment by both prokaryotes and eukaryotes. Although produced from both normal and cancer cells, malignant cells release a much higher amount of EVs, which also contain tumor-specific proteins and RNAs. We previously found that G26/24 oligodendroglioma cells shed EVs that contain the pro-apoptotic factors FasL and TRAIL1-2. Interestingly, G26/24 release, via EVs, extracellular matrix remodelling proteases3, and H1° histone protein4, and mRNA. To shed further light on the role of EVs in discarding proteins and mRNAs otherwise able to counteract proliferative signals, we studied a melanoma cell line (A375). We found that also thes…

0301 basic medicineCancer ResearchCellular differentiationBlotting WesternFluorescent Antibody TechniqueMYEF2ApoptosisRNA-binding proteinexosomesmembrane vesiclesReal-Time Polymerase Chain ReactionChromatography AffinityHistones03 medical and health sciencesH1.0 linker histone; RNA-binding proteins (RBPs); extracellular vesicles (EVs) membrane vesicles (MVs); exosomes; MYEF2Settore BIO/10 - BiochimicaTumor Cells CulturedHumansexosomeSecretionRNA MessengerSettore BIO/06 - Anatomia Comparata E Citologiamelanoma cell line (A375) myelin expression factor-2 (MYEF2)MelanomaTranscription factorCell ProliferationH1.0 linker histonebiologyReverse Transcriptase Polymerase Chain ReactionEXTRACELLULAR VESICLESRNA-Binding ProteinsRNACell DifferentiationArticlesCell biologyBlotCell Transformation Neoplastic030104 developmental biologyHistoneOncologySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationCancer cellbiology.proteinRNA-binding proteins (RBPs)extracellular vesicles (EVs) membrane vesicles (MVs)
researchProduct

Establishment and Preliminary Characterization of Three Astrocytic Cells Lines Obtained from Primary Rat Astrocytes by Sub-Cloning.

2020

Gliomas are complex and heterogeneous tumors that originate from the glial cells of the brain. The malignant cells undergo deep modifications of their metabolism, and acquire the capacity to invade the brain parenchyma and to induce epigenetic modifications in the other brain cell types. In spite of the efforts made to define the pathology at the molecular level, and to set novel approaches to reach the infiltrating cells, gliomas are still fatal. In order to gain a better knowledge of the cellular events that accompany astrocyte transformation, we developed three increasingly transformed astrocyte cell lines, starting from primary rat cortical astrocytes, and analyzed them at the cytogenet…

0301 basic medicinelcsh:QH426-470Somatic cellPrimary Cell CultureArticle03 medical and health sciencesCytogenetics0302 clinical medicineGliomaSettore BIO/10 - BiochimicaParenchymaGeneticsmedicineAnimalsEpigeneticsSettore BIO/06 - Anatomia Comparata E CitologiaGenetics (clinical)Cell Line TransformedCloningbiologymedicine.diseaseCell biologyClone CellsRatsgliomaslinker histone H1.0lcsh:GeneticsSettore BIO/18 - Geneticaastrocyte cell lines030104 developmental biologymedicine.anatomical_structureHistoneepigenetic alterationsCell culture030220 oncology & carcinogenesisAstrocytesbiology.proteinAstrocyteGenes
researchProduct

H1.0 Linker Histone as an Epigenetic Regulator of Cell Proliferation and Differentiation

2018

H1 linker histones are a class of DNA-binding proteins involved in the formation of supra-nucleosomal chromatin higher order structures. Eleven non-allelic subtypes of H1 are known in mammals, seven of which are expressed in somatic cells, while four are germ cell-specific. Besides having a general structural role, H1 histones also have additional epigenetic functions related to DNA replication and repair, genome stability, and gene-specific expression regulation. Synthesis of the H1 subtypes is differentially regulated both in development and adult cells, thus suggesting that each protein has a more or less specific function. The somatic variant H1.0 is a linker histone that was recognized…

0301 basic medicinelcsh:QH426-470Somatic cellRNA-binding proteinhistone H1.0RNA-binding proteinsReviewBiologymedicine.disease_cause03 medical and health sciencesSettore BIO/10 - BiochimicaGeneticsmedicineEpigeneticsSettore BIO/06 - Anatomia Comparata E CitologiaGenetics (clinical)linker histonesCell growthChromatinCell biologylcsh:Geneticslinker histone030104 developmental biologyHistoneCancer cellbiology.proteinStem cellextracellular vesiclesCarcinogenesisGenes
researchProduct

ISWI Regulates Higher-Order Chromatin Structure and Histone H1 Assembly In Vivo

2007

Imitation SWI (ISWI) and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of ISWI in vivo, we examined defects in chromosome structure and gene expression resulting from the loss of Iswi function in Drosophila. Consistent with a broad role in transcriptional regulation, the expression of a large number of genes is altered in Iswi mutant larvae. The expression of a dominant-negative form of ISWI leads to dramatic a…

Imitation SWINucleosome assemblyTranscription GeneticQH301-705.5RNA-POLYMERASE-IIPROTEINCHROMOSOME ARCHITECTUREGeneral Biochemistry Genetics and Molecular BiologyHistones03 medical and health sciencesNUCLEOSOME REMODELING FACTORHigher Order Chromatin StructureHistone H1NucleosomeAnimalsTRANSCRIPTIONBiology (General)LIVING CELLSMolecular Biology030304 developmental biologyGENE-EXPRESSIONRegulation of gene expressionGeneticsAdenosine Triphosphatases0303 health sciencesGeneral Immunology and MicrobiologybiologyGeneral Neuroscience030302 biochemistry & molecular biologyGenetics and GenomicsCell BiologyChromatin Assembly and DisassemblyChromatinChromatinCell biologyDROSOPHILAHistoneGene Expression RegulationLarvaMutationbiology.proteinLINKER HISTONEGeneral Agricultural and Biological SciencesResearch ArticleDevelopmental BiologyTranscription FactorsDOSAGE COMPENSATION
researchProduct